天天书屋

手机浏览器扫描二维码访问

第700章 踏遍众世间极限伯克利(第1页)

事实上,虽然都是无意义源流。

可如今穆苍所处的「第二重世间」内的这一座源流,却是在整体强度层面上,远远超越了那「第一重世间」【终乂绝数】级……或可称莱因哈特基数级源流的更高阶源流。

而与这一座无意义源流驻立的未知等阶异数强度所对应的大基数,则赫然是……特殊-完全莱茵哈特基数。

若想要理解这一大基数,便要从超级莱因哈特基数讲起。

所谓超级莱因哈特基数,顾名思义便是莱因哈特基数的超级高阶加强版本。

所以其在本质上,亦属于一种非平凡基本嵌入的临界点,嵌入其自身。

同时在这两种大基数中间,实际上还存在有一种名为n阶集合论公式集定义下的莱茵哈特基数。

只不过,由于这一大基数的一致性强度远远不如超级莱茵哈特基数,所以暂且略过不提。

总之,超级莱因哈特基数的具体定义即是:

存在一个序数κ,对于每一个序数α,若都存在一个基本嵌入j:V→V,使得j(κ)>α,并且κ是j的临界点,则可称κ为超级莱因哈特基数。

同样的,若κ是超级莱茵哈特基数,那么便会存在γ<κ,使得(Ⅴγ,Vγ+1)是ZF?+莱茵哈特基数存在公理的模型。

其中的ZF?,便可理解为二阶ZF公理系统。

是的,ZF系统赫然有一阶二阶三阶四阶,乃至更多阶数之分。

总的来说,相对于莱茵哈特基数,超级莱茵哈特基数便是在它的基础上,增加了一个限定条件:

即,j(κ)要大到符合期望。

若对这所谓的“期望”概念详尽展开来讲,就是对于所有的序数α,都要有j(κ)>α。

而进一步展开继续阐述,超级莱因哈特基数的定义,便是涉及到了对于所有序数的超越性。

即对于任意给定的序数α,都能找到一个基本嵌入,使得κ被映射到一个更大的序数上。

相比较而言,莱因哈特基数却仅要求存在一个基本嵌入j:V→V使得κ是j的临界点,而不要求对所有序数α都有j(κ)>α,可超级莱因哈特基数却是与之全然相反的。

所以后者的一致性强度,要远远……远远胜于前者。

可如此巨大的超级莱茵哈特基数,却依然要远远远远……远远弱于伯克利基数。

完全没有任何可比性。

因此,就需要向那更高层次的“数学世界”去寻找一致性强度更为巨大的大基数。

即,A-超级莱茵哈特基数。

其具体定义便是:对于一个合适的类A,若所有的序数λ都有一个非平凡初等嵌入j:V→V,crt(j)=κ,j(κ)>λ,并且j?(A)=j(A)(j?(A):=U(a∈Ord)j(A∩Vα),那么这样的κ,就可称为A-超级莱茵哈特基数。

总的来说,这种大基数就等若于莱茵哈特基数的进阶加强版——超级莱茵哈特基数的进阶加强版。

其是在更高层面上对于超级莱茵哈特基数的一种更大推广或者说延伸,因而两者之间的差距,巨大到简直无可形容。

可即便如此,即便庞大到如斯程度,A-超级莱茵哈特基数也依旧远远……远远弱于伯克利基数。

所以就要以它为踏脚石,纵身一跃无尽飞升,前往那更高层次去寻索更高阶更巨大的大基数。

即,完全莱茵哈特基数。

关于这种大基数的定义,若进行简化性的阐述便是:

若对于每一个A∈Vκ+1,都有(Vκ,Vκ+1)是ZF?+A-超级莱茵哈特基数存在公理的模型,那么这样的κ,就是完全莱茵哈特基数。

所以,完全莱茵哈特基数的强度,就可以超越伯克利基数了么?

遗憾的是,依然不能。

因为这两种大基数无法进行清晰比较。

或者更进一步的说,这两者之间的一致性强度差异是不能判定的。

根本无法知晓这两种大基数到底谁的强度会更高,只能大略认为二者在强度上可以划上一个稍显模糊的“=”号。

那么,能够真正在一致性强度层面上彻底超越伯克利基数的大基数,又到底会是什么呢?

答案是,特殊-完全莱茵哈特基数。

长生从猎鲸开始  穿成恶婆婆后我成了全村顶梁柱  陆地键仙  无人救我双A  杀死那个白月光  甜蜜军婚:女企业家在八零赚翻了  流放后开始发家致富  征服之路  权变  灵宠创造模拟器  承欢记  想活命?进娱乐圈吧!  惊!网恋对象竟是星际最强指挥官  都市全能神医  圣手神医  尸囊人  开局长生不死,谁都以为我无敌  心之怪盗!但柯南  病美人师尊洗白了吗[穿书]  一不小心和醋精结婚了  

热门小说推荐
替嫁宠妾诱心,引他入局

替嫁宠妾诱心,引他入局

林娆一睁眼,就知道妹妹跟她一样重生了。上辈子,妹妹抢了林娆的先给一心向佛的奕王为妾,一步登天。林娆却嫁给了一个穷书生。林菀因为勾引奕王,被他一怒之下杖毙,曝尸荒野。而林娆则扶持书生登门及第,最终成了首辅夫人。重活一世,林菀执意要换亲。林娆冷笑,她的好妹妹很快就会后悔林娆进了王府,初见禁欲佛子时,她的好胜心注定自...

红楼庶长子

红楼庶长子

红楼庶长子简介emspemsp穿越成贾政小妾周姨娘早夭的儿子身上,凭借几个小金手指,把红楼世界闹了个天翻地覆。精┊彩┇文┊章wоо⒙νiρ﹝Wσó⒙νiρ﹞woo18vip...

电竞:射手将自家打野宠上天

电竞:射手将自家打野宠上天

打野江池ID江流江流无去处,一生何所归?论坛高赞贴说,江流这个ID取的不好,一生辗转,颠沛流离,明明有实力,却一直被俱乐部蹉跎,连首发都打不上。熬到遗憾退役的年纪,却没打过几场正经比赛。射手宴西临ID归海全联盟都说,归海作为联盟最强富二代,集邮了多少天才顶级选手,纵观整个职业生涯,却没有给自己赢得一个冠军。...

犬科男友

犬科男友

犬科男友简介emspemsp关于犬科男友小狼狗和小奶狗,一个不像话,一个没出息。狼狗篇男孩第一次见到那个男人的时候,才8岁,男人是风头正盛炙手可热的明星,比他大15岁,穿一件丝绸睡衣。10年后,男孩长成了少年,而父亲,甩掉了这个已经厌倦的男人。那一天,少年拎着书包疯跑出去,满城疯找,第一次给男人主动打电话,发微信。以前满城都是男人的海报,现在满城的人都遗忘了他。终于男人接了他的电话,告诉少年自己正在租住的房子里打包行李,要回老家了。少首发po18nlpo1⒏υip...

突然无敌了

突然无敌了

道天钧穿越两年后得到不死能力,与另一种无敌能力,从此变得不再一样。(遮天帝霸完美世界等融合同人)简介无力,请阅读正文。作者起点新人,文章中有些雷点毒点,请不要在意QAQ,越后期越好看如果您喜欢突然无敌了,别忘记分享给朋友...

末世种田:带着萌宝去寻夫

末世种田:带着萌宝去寻夫

叶栗以为只是一场梦,结果梦醒后,身在丧尸横行的末日世界不说,还生了俩爹都不知道是谁的娃。末世太苦,没物资,没关系,反正她祖传是农民,她能自己种农作物!末世人心太坏,斗不过,没关系,反正娃他爹是超级大BOSS,找大BOSS当靠山,谁还敢欺负他们娘三!如果您喜欢末世种田带着萌宝去寻夫,别忘记分享给朋友...

每日热搜小说推荐